YAUTOMATIONDIRECT:

DL205 PLC User Manual
Volume 2 of 2

Manual Number: D2-USER-M

SO NN
\\Q\\\\\\\\-_ \\‘

Direct

LOGIC

Notes

& WARNING ¥

Thank you for purchasing automation equipment from Automationdirect.com®, doing business as,
AutomationDirect. We want your new automation equipment to operate safely. Anyone who installs or
uses this equipment should read this publication (and any other relevant publications) before installing or
operating the equipment.

To minimize the risk of potential safety problems, you should follow all applicable local and national codes
that regulate the installation and operation of your equipment. These codes vary from area to area and
usually change with time. It is your responsibility to determine which codes should be followed, and to
verify that the equipment, installation, and operation is in compliance with the latest revision of these
codes.

At a minimum, you should follow all applicable sections of the National Fire Code, National Electrical
Code, and the codes of the National Electrical Manufacturer's Association (NEMA). There may be local
regulatory or government offices that can also help determine which codes and standards are necessary for
safe installation and operation.

Equipment damage or serious injury to personnel can result from the failure to follow all applicable codes
and standards. We do not guarantee the products described in this publication are suitable for your
particular application, nor do we assume any responsibility for your product design, installation, or
operation.

Our products are not fault-tolerant and are not designed, manufactured or intended for use or resale as on-
line control equipment in hazardous environments requiring fail-safe performance, such as in the
operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life
support machines, or weapons systems, in which the failure of the product could lead directly to death,
personal injury, or severe physical or environmental damage ("High Risk Activities"). AutomationDirect
specifically disclaims any expressed or implied warranty of fitness for High Risk Activities.

For additional warranty and safety information, see the Terms and Conditions section of our catalog. If
you have any questions concerning the installation or operation of this equipment, or if you need
additional information, please call us at 770-844-4200.

This publication is based on information that was available at the time it was printed. At
AutomationDirect we constantly strive to improve our products and services, so we reserve the right to
make changes to the products and/or publications at any time without notice and without any obligation.
This publication may also discuss features that may not be available in certain revisions of the product.

This publication may contain references to products produced and/or offered by other companies. The
product and company names may be trademarked and are the sole property of their respective owners.
AutomationDirect disclaims any proprietary interest in the marks and names of others.

Copyright 2010, Automationdirect.com Incorporated
All Rights Reserved

No part of this manual shall be copied, reproduced, or transmitted in any way without the prior, written
consent of Automationdirect.com Incorporated. AutomationDirect retains the exclusive rights to all
information included in this document.

A& AVERTISSEMENT ¥

Nous vous remercions d'avoir acheté I'équipement d'automatisation de Automationdirect.comMC, en faisant des
affaires comme, AutomationDirect. Nous tenons a ce que votre nouvel équipement d'automatisation fonctionne en
toute sécurité. Toute personne qui installe ou utilise cet équipement doit lire la présente publication (et toutes les
autres publications pertinentes) avant de I'installer ou de I'utiliser.

Afin de réduire au minimum le risque d'éventuels problemes de sécurité, vous devez respecter tous les codes locaux et
nationaux applicables régissant I'installation et le fonctionnement de votre équipement. Ces codes différent d'une
région a l'autre et, habituellement, évoluent au fil du temps. 1l vous incombe de déterminer les codes a respecter et
de vous assurer que I'équipement, I'installation et le fonctionnement sont conformes aux exigences de la version la
plus récente de ces codes.

Vous devez, a tout le moins, respecter toutes les sections applicables du Code national de prévention des incendies,
du Code national de I'électricité et des codes de la National Electrical Manufacturer's Association (NEMA). Des
organismes de réglementation ou des services gouvernementaux locaux peuvent également vous aider a déterminer
les codes ainsi que les normes a respecter pour assurer une installation et un fonctionnement sdrs.

L'omission de respecter la totalité des codes et des normes applicables peut entrainer des dommages a I'équipement
ou causer de graves blessures au personnel. Nous ne garantissons pas que les produits décrits dans cette publication

conviennent a votre application particuliére et nous n'assumons aucune responsabilité a I'égard de la conception, de
I'installation ou du fonctionnement de votre produit.

Nos produits ne sont pas insensibles aux défaillances et ne sont ni congus ni fabriqués pour I'utilisation ou la revente
en tant qu'équipement de commande en ligne dans des environnements dangereux nécessitant une sécurité absolue,
par exemple, I'exploitation d'installations nucléaires, les systemes de navigation aérienne ou de communication, le
controle de la circulation aérienne, les équipements de survie ou les systémes d'armes, pour lesquels la défaillance du
produit peut provoquer la mort, des blessures corporelles ou de graves dommages matériels ou environnementaux
(«activités a risque élevé»). La société AutomationDirect nie toute garantie expresse ou implicite d'aptitude a
I'emploi en ce qui a trait aux activités a risque élevé.

Pour des renseignements additionnels touchant la garantie et la sécurité, veuillez consulter la section Modalités et
conditions de notre documentation. Si vous avez des questions au sujet de I'installation ou du fonctionnement de cet
équipement, ou encore si vous avez besoin de renseignements supplémentaires, n'hésitez pas a nous téléphoner au
770-844-4200.

Cette publication s'appuie sur I'information qui était disponible au moment de I'impression. A la société
AutomationDirect, nous nous efforcons constamment d'améliorer nos produits et services. C'est pourquoi nous
nous réservons le droit d'apporter des modifications aux produits ou aux publications en tout temps, sans préavis ni
quelque obligation que ce soit. La présente publication peut aussi porter sur des caractéristiques susceptibles de ne
pas étre offertes dans certaines versions révisées du produit.

Marques de commerce

La présente publication peut contenir des références a des produits fabriqués ou offerts par d'autres entreprises. Les
désignations des produits et des entreprises peuvent étre des marques de commerce et appartiennent exclusivement a
leurs propriétaires respectifs. AutomationDirect nie tout intérét dans les autres marques et désignations.

Copyright 2010, Automationdirect.com Incorporated

Tous droits réservés

Nulle partie de ce manuel ne doit étre copiée, reproduite ou transmise de quelque fagon que ce soit sans le
consentement préalable écrit de la société Automationdirect.com Incorporated. AutomationDirect conserve les
droits exclusifs a I'égard de tous les renseignements contenus dans le présent document.

VoLUME ONE:
TABLE OF CONTENTS

Volume One: Tableof Contents ot i
Volume Two: Tableof Contents xi
Chapter 1: Getting Started 1-1
Introduction e e 1-2
The Purpose of this Manual 1-2
Where t0 Begin 1-2
Supplemental Manuals 1-2
Technical SUPPOIt 1-2
Conventions Used ittt 1-3
Key Topics for Each Chapter i 1-3
DL205 System Componentsttt 1-4
CPUS 1-4
BaSES . . 1-4

I/0 Configuration 1-4

/O MOdUIES . . oo 1-4
DL205 System Diagrams 1-5
Programming Methods 1-7
DirectSOFT Programming for WindOWws. 1-7
Handheld Programmer e 1-7
DirectLOGIC™ Part Numbering System o .. 1-8
Quick Start for PLC Validation and Programming 1-10
Steps to Designing a Successful Systemo i 1-13
Chapter 2: Installation, Wiring and Specifications 2-1

Safety Guidelines i e e 2-2

Table of Contents

[
Plan for Safety e 2-2
Three Levels of Protection i 2-3
EMErgency StOPSo 2-3
Emergency Power DISCONNECE 2-4
Orderly System ShutdOwn 2-4
Class 1, Division 2, Approval 2-4
Mounting Guidelines i e e 2-5
Base DIMENSIONS e e 2-5
Panel Mounting and Layout e 2-6
ENCIOSUIES . . . o 2-7
Environmental Specifications e 2-8
PO 2-8
Marine USe 2-9
AgENCY APPIOVaAlS . ..o 2-9
24 VDC POWEN BaSES . . . ittt 2-9
Installing DL205 Basesciuuutiiniii ittt 2-10
Choosing the Base Type 2-10
Mounting the Base 2-10
Using Mounting Rails 2-11
Installing ComponentsintheBase 2-12
Base Wiring Guidelines i i 2-13
Base WIriNgo 2-13
I/O Wiring Strategies ittt 2-14
PLC Isolation Boundariest 2-14
Powering I/O Circuits with the Auxiliary Supply 2-15
Powering I/O Circuits Using Separate Supplies 2-16
Sinking / Sourcing ConCeptSottt 2-17
I/0 “Common” Terminal Concepts it 2-18
Connecting DC I/0 to “Solid State” Field Devices 2-19
Solid State INPUL SENSOIS e 2-19
Solid State OQutput Loads e 2-19
Relay Output Guidelines e e 2-21
Surge Suppression For Inductive Loads e 2-21
I/O Modules Position, Wiring, and Specification 2-25
SIot NUMDEriNgo 2-25
Module Placement Restrictions 2-25

I I DL205 PLC User Manual, 4th Edition, Rev. A

Table of Contents

Special Placement Considerations for Analog Modules 2-26

Discrete Input Module Status Indicators 2-26

Color Coding of /O Modules e 2-26

Wiring the Different Module Connectors 2-27

I/O Wiring Checklist 2-28
D2-08ND3, DCINPUL . . . oottt e e e e e 2-29
D2-16ND3-2, DCINPULottt ettt ettt ettt et e et e e 2-29
D2-32ND3, DCINpUt e e e 2-30
D2-32ND3-2, DCINPULttt ittt ettt e e 2-31
D2-08NA-T, ACINPUL ... e e e e e 2-32
D2-08NA-2, ACINPULttt ettt et e e 2-33
D2-16NA, ACINpUL . ..o e e e 2-34
F2-08SIM, Input Simulator i i 2-34
D2-04TD1, DCOUtpUtottt e ettt e 2-35
D2-08TDT1, DC OULPULttt ettt et ettt et e e eeaeeann 2-36
D2-08TD2, DC OUtPULttt ettt e e 2-36
D2-16TD1-2, DC OULPULttt ettt ettt et et eeaeeann 2-37
D2-16TD2-2, DCOULPULttt ettt et e e 2-37
F2-16TD1(2)P, DC Output With Fault Protection 2-38
F2-16TD1P, DC Output With Fault Protection 2-39
F2-16TD2P, DC Output with Fault Protection 2-40
D2-32TD1, DCOUtPULt e et et et e e 2-41
D2-32TD2, DC OULPULottt ittt ittt et et et e e 2-41
F2-08TA, AC OUtpUL i e et e e e 2-42
D2-08TA, AC OULPUL ...ttt ittt ettt e ettt e et e e e 2-42
D2-12TA, ACOUtPULt et et et e 2-43
D2-04TRS, Relay Output i e ittt e e 2-44
D2-08TR, Relay Output i i i e 2-45
F2-08TR, Relay Output i it 2-46
F2-08TRS, Relay Output it i 2-47

DL205 PLC User Manual, 4th Edition, Rev. A I 11

Table of Contents

[
D2-12TR, Relay Output i e et 2-48
D2-08CDR 4 pt., DC Input / 4pt., Relay Output 2-49
Glossary of Specification Terms i, 2-50
Chapter 3: CPU Specifications and Operations 3-1
CPU OVEIVIEW . ..ttt ittt ettt ettt ittt 3-2
General CPU Featureso i e 3-2
DL230 CPU Featurest e e 3-2
DL240 CPU Featuresottt e e 3-2
DL250-1 CPU Featurest e e 3-3
DL260 CPU Featurest e 3-3
CPU General Specifications i 3-4
CPU Base Electrical Specifications i il 3-5
CPU Hardware Setupttt ittt et e e 3-6
Communication Port Pinout Diagrams i e 3-6
Port 1 Specifications e 3-7
Port 2 Specifications e 3-8
Selecting the Program Storage Media i 3-9
BUilt-in EEPROM 3-9
EEPROM SizZeS . ..ot 3-9
EEPROM Operationst e e e e 3-9
Installing the CPU 3-10
Connecting the Programming Devices 3-10
CPU Setup Information 3-11
Status INdiCatorso 3-12
Mode Switch FUNCtions 3-12
Changing Modes in the DL205 PLC e e 3-13
Mode of Operation at POWEr-UPt 3-13
Using Battery Backupttt 3-14
DL230 and DL240o ot 3-14
DL250-1 and DL260 3-14
Battery BaCKup 3-14
Auxiliary FUNCHIONSo 3-15
Clearing an EXisting Program i e e 3-16
Initializing System MemOry 3-16
AV} I DL205 PLC User Manual, 4th Edition, Rev. A

Table of Contents

ad
Setting the Clock and Calendar 3-16
Setting the CPU Network Address e 3-17
Setting Retentive Memory Rangesot e 3-17
USiNg @ Password 3-18
Setting the Analog Potentiometer Ranges, 3-19
CPUOPperationttt 3-21
CPU Operating System 3-21
Program Mode Operation 3-22
Run Mode Operation 3-22
Read INPULS . . . oo 3-23
Read Inputs from Specialty and Remote I/0 3-23
Service Peripherals and Force I1/O 3-23
CPU Bus Communication e 3-24
Update Clock, Special Relays and Special Registers 3-24
Solve Application Program 3-25
Solve PID LOOp EQUALIONSo oo 3-25
WIIte OULPULS . . . 3-25
Write Outputs to Specialty and Remote I/O 3-26
DIagNOSTICS . o oot 3-26
I/OResponse TiMettt ittt iiee e, 3-27
Is Timing Important for Your Application? 3-27
Normal Minimum I/O ReSPONSE oot e e e 3-27
Normal Maximum I/O ReSPONSEot e e e 3-27
Improving Response TiMe i e e e e e 3-28
CPU Scan Time Considerations00 iiiiiiiiiiinnnnnnnnn. 3-29
Initialization ProCesS oo 3-30
Reading INPULS o oo 3-30
Reading Inputs from Specialty I/O 3-31
Service Peripherals 3-31
CPU Bus Communication e 3-32
Update Clock/Calendar, Special Relays, Special Registers 3-32
WIHItING OULPULS 3-32
Writing Outputs to Specialty I/0 3-33
DIagNOStICS . o o ot 3-33
Application Program EXeCULiON 3-34
PLC Numbering Systems i e 3-35

DL205 PLC User Manual, 4th Edition, Rev. A I V

Table of Contents

[
PLC RESOUICES . . .ot e e e e e 3-35
VM BMOTY . 3-36
Binary-Coded Decimal Numbers i 3-36
Hexadecimal NUMDbers 3-36
Memory Map e e e e e e e 3-37
Octal Numbering System 3-37
Discrete and Word Locations 3-37
V-Memory Locations for Discrete Memory Areas i 3-37
Input PoiNts (X Data TYPE) . . 3-38
Output Points (Y Data TYPe) . ..ottt e 3-38
Control Relays (C Data TYPe) . . . v v oottt e 3-38
Timers and Timer Status Bits (T Data type) 3-38
Timer Current Values (V Data TYPe)ottt s 3-39
Counters and Counter Status Bits (CT Datatype)c.oiuiieieo .. 3-39
Counter Current Values (V Data TYPe)ot 3-39
Word Memory (V Data TYPE) vt 3-39
Stages (S Data type) . ..o o vttt 3-40
Special Relays (SP Data TYPE)o ottt 3-40
Remote I/0 Points (GX Data TYPE) . ..o v v i 3-40
DL230 System V-MemoOryttt ittt 3-41
DL240 System V-MemoOryttt ittt 3-43
DL250-1 System V-memory (DL250 also) 3-46
DL260 System V-memoryttt 3-49
DL205 Ali@asesttt i e e e 3-52
DL230 Memory Map oo ittt e e e e 3-53
DL240 Memory Mapo ittt e e e 3-54
DL250-1 Memory Map (DL250 also)cciiiuiiiiiiiiinnnn... 3-55
DL260 Memory Mapo ittt ittt e e 3-56
XInput/YOutput Bit Map, 3-57
ControlRelay Bit Mapo e 3-59
Stage Control/Status BitMap i 3-63
Timer and Counter Status Bit Maps 3-65
Remote I/OBIit Mapottt ittt 3-66
Vi I DL205 PLC User Manual, 4th Edition, Rev. A

Table of Contents

ad

Chapter 4: System Design and Configuration 4-1
DL205 System Design Strategies it 4-2
I/O System Configurations 4-2
Networking Configurations 4-2
Module Placement ittt ettt 4-3
SIot NUMDbBEINGo 4-3
Module Placement Restrictions 4-3
Automatic I/0 Configuration 4-4
Manual I/0 Configuration e 4-4
Removing a Manual Configuration 4-5
Power-On I/O Configuration Check 4-5
I/O Points Required for Each Module 4-6
Calculating the Power Budget i, 4-7
Managing your POWEr RESOUICEt e 4-7
CPU Power Specifications 4-7
Module Power REQUIrEMENTS 4-7
Power Budget Calculation Example 4-9
Power Budget Calculation Worksheet 4-10
Local Expansion 1/O e e 4-11
D2-CM Local Expansion Module 4-11
D2-EM Local Expansion Module 4-12
D2-EXCBL-1 Local Expansion Cable 4-12
DL260 Local EXpansion System i e 4-13
DL250-1 Local Expansion System 4-14
Expansion Base Output Hold Option 4-15
Enabling 1/0 Configuration Check using DirectSOFT 4-16
Expanding DL205 1/O i e e 4-17
I/O EXPanSion OVEIVIEW e 4-17
Ethernet Remote Master, H2-ERM(-F) e 4-17
Ethernet Remote Master Hardware Configuration 4-18
Installing the ERM Module 4-19
Ethernet Base Controller, H2-EBC(100)(-F) oo 4-22
Install the EBC Module 4-23
Setthe Module ID 4-23
Insert the EBC Module 4-23
Network Cabling 4-24

DL205 PLC User Manual, 4th Edition, Rev. A I VII

Table of Contents

[
10BaseFL Network Cabling e 4-25
Maximum Cable Length 4-25
Add a Serial Remote I/O Master/Slave Module 4-26
Configuring the CPU’s Remote I/O Channel 4-27
Configure Remote I/O Slaves 4-29
Configuring the Remote I/O Table 4-29
Remote I/0 Setup Program e 4-30
Remote I/0 Test Program i e e 4-31
Network Connections to Modbus and DirectNet 4-32
Configuring Port 2 For DirectNet 4-32
Configuring Port 2 For Modbus RTU e 4-32
Modbus Port Configuration 4-33
DirectNET Port Configuration, 4-34
Network Slave Operation i, 4-35
Modbus Function Codes Supported 4-35
Determining the Modbus Address 4-35
If Your Host Software Requires the Data Type and Address 4-35
If Your Modbus Host Software Requires an Address ONLY 4-38
Example 1: V2100 584/984 MOCEo o it 4-40
Example 2: Y20 584/984 Mode 4-40
Example 3: T10 Current Value 484 Mode 4-40
Example 4: C54 584/984 Mode i 4-40
Determining the DirectNET Address it e 4-40
Network Master Operation e 4-41
Communications from a Ladder Program 4-44
Multiple Read and Write Interlocks 4-44
Network Modbus RTU Master Operation (DL260only) 4-45
Modbus Function Codes Supported 4-45
Modbus Port Configuration 4-46
RS-485 Network (Modbus only) 4-47
RS-232 Network 4-47
Modbus Read from Network (MRX)o 4-48
MRX Slave Memory AdAress 4-49
MRX Master Memory AdAresses 4-49
MRX Number of Elements 4-49
MRX Exception Response Buffer i 4-49
Modbus Write to Network (MWX) 4-50
VI I DL205 PLC User Manual, 4th Edition, Rev. A

Table of Contents

ad

MWX Slave Memory Adress 4-51
MWX Master Memory Addresseso vt e 4-51
MWX Number of Elements 4-51
MWX Exception Response Buffer 4-51
MRX/MWX Example in DireCtSOFT e 4-52
Multiple Read and Write Interlocks 4-52
Non-Sequence Protocol (ASCIl In/Outand PRINT) 4-54
Configure the DL260 Port 2 for NON-SequUENCe e e 4-54
RS—485 Network 4-55
RS-232 Network 4-55
Configure the DL250-1 Port 2 for Non-Sequencec.oueeu... 4-56
RS—422 Network 4-57
RS-232 Network 4-57
Chapter 5: RLL and Intelligent Box (IBOX) Instructions 5-1
Introduction e e e e e e 5-2
Using Boolean Instructions i 5-5
END Statement 5-5
SIMPlEe RUNGS . . .o 5-5
Normally Closed CONtact e 5-6
CoNtaCtS IN SEMES . v v ettt 5-6
Midline OULPULS oo 5-6
Parallel Elements 5-7
Joining Series Branches in Parallel 5-7
Joining Parallel Branches in Series 5-7
Combination Networks 5-7
Comparative BOOlean 5-8
Boolean Stack 5-8
Immediate Boolean 5-9
Boolean Instructions i i e e 5-10
Comparative Boolean i 5-27
Immediate Instructions e e e e 5-33
Timer, Counter and Shift Register Instructions 5-41
USING TIMeIS o o oo 5-41
Timer Example Using Discrete Status Bits 5-43

DL205 PLC User Manual, 4th Edition, Rev. A I IX

Table of Contents

[
Timer Example Using Comparative Contacts 5-43
Accumulating Timer (TMRA) e e 5-44
Accumulating Timer Example using Discrete Status Bits 5-45
Accumulator Timer Example Using Comparative Contacts 5-45
Counter Example Using Discrete Status Bits 5-47
Counter Example Using Comparative Contacts 5-47
Stage Counter Example Using Discrete Status Bits 5-49
Stage Counter Example Using Comparative Contacts 5-49
Up/Down Counter Example Using Discrete Status Bits 5-51
Up/Down Counter Example Using Comparative Contacts 5-51
Accumulator/Stack Load and Output Data Instructions 5-53
Logical Instructions (Accumulator) i it 5-71
Math Instructions e, 5-88
Transcendental Functions (DL260only) 5-121
Bit Operation Instructions i, 5-123
Number Conversion Instructions (Accumulator) 5-130
Table Instructions e e e 5-144
Clock/Calendar Instructions0ttt 5-175
CPU Control Instructions ittt 5-177
Program Control Instructions i 5-179
Interrupt Instructions 5-187
Intelligent I/O Instructions i 5-191
Network Instructions e 5-193
Message Instructions i e 5-197
Modbus RTU Instructions (DL260)ctttiiinietrnnennennn 5-205
Modbus Read from Network (MRX) o 5-205
Modbus Write to Network (MWX) 5-208
ASCIl Instructions (DL260)c..uttttttteeeeeeenennnennnnns 5-211
Intelligent Box (IBox) Instructions (DL250-1/DL260) 5-230
X I DL205 PLC User Manual, 4th Edition, Rev. A

Table of Contents

VoLUME Two:
TABLE OF CONTENTS

Chapter 6: Drum Instruction Programming (DL250-1/DL260 only) .6-1

Introduction e e e e e 6-2
PUIPOSE . . 6-2
Drum Terminology i 6-2
Drum Chart Representationt 6-3
OULPUL SEOUENCES . . . ottt e e e e et e e e e e e 6-3

Step Transitions e 6-4
Drum INSErucCtion TYPESottt et e e e e e e 6-4
Timer-Only Transitionso 6-4
Timer and Event Transitions 6-5
Event-Only Transitions 6-6
Counter ASSIGNMENTSot e e e 6-6
Last Step Completion 6-7

Overview of Drum Operation it 6-8
Drum Instruction Block Diagramt e 6-8
Powerup State of Drum Registers i e 6-9

Drum Control Techniques ittt 6-10
Drum Control INPULS 6-10
Self-Resetting Drum 6-11
Initializing Drum OULPULS 6-11
Using Complex Event Step Transitions 6-11

Drum Instruction e e e e e 6-12
Timed Drum with Discrete Outputs (DRUM) 6-12
Event Drum (EDRUM) e 6-14
Handheld Programmer Drum MNemonicsuv it 6-16

DL205 PLC User Manual, 4th Edition, Rev. A I X

Table of Contents

[
Masked Event Drum with Discrete Outputs (MDRMD) 6-19
Masked Event Drum with Word Output (MDRMW) 6-21
Chapter 7: RLLPLUS Stage Programming 7-1
Introduction to Stage Programming i it 7-2
Overcoming “Stage Fright” 7-2
Learning to Draw State Transition Diagrams 7-3
Introduction to Process States it 7-3
The Need for State Diagrams it e e 7-3
A 2-State PrOCESS . . o ot it e 7-3
RLL EQUIValENt 7-4
Stage Equivalent 7-4
Let’s COMPArE . . ot 7-5
INitial StagesSo 7-5
What Stage Bits DO o 7-6
Stage Instruction Characteristics 7-6
Using the Stage Jump Instruction for State Transitions 7-7
Stage Jump, Set, and Reset Instructions 7-7
Stage Program Example: Toggle On/Off Lamp Controller 7-8
A 4-STate PrOCESS . . . o o ittt e 7-8
Four Steps to Writing a Stage Program i, 7-9
Stage Program Example: A Garage DoorOpenerc.coovueeenn.. 7-10
Garage Door Opener Example e 7-10
Draw the Block Diagram 7-10
Draw the State Diagram i 7-11
Add Safety Light Feature e 7-12
Modify the Block Diagram and State Diagram 7-12
UsingaTimerInside aStage i 7-13
Add Emergency Stop Feature e 7-14
Exclusive Transitionsot 7-14
Stage Program Design Considerations oL, 7-15
Stage Program Organization 7-15
How Instructions Work Inside Stages 7-16
Using a Stage as a SUpPervisory Process 7-17
Stage COUNTEN 7-17
X1 I DL205 PLC User Manual, 4th Edition, Rev. A

Table of Contents

|

Unconditional QUtpULS 7-18
Power Flow Transition Technique e 7-18
Parallel Processing Concepts 0ot 7-19
Parallel ProCesseS oot 7-19
CoNVErging PrOCESSES . . oo vttt e e e e e e 7-19
Convergence Stages (CV) . ..ottt 7-19
Convergence Jump (CVIMP) ... 7-20
Convergence Stage Guidelines 7-20
Managing Large Programsttt 7-21
Stage Blocks (BLK, BEND) 7-21
Block Call (BCALL)ttt 7-22
RLLPLUS (Stage) INStructionsouninvininennineneeneneenennn 7-23
Stage (SG) . v v 7-23
Initial Stage (ISG) o oo 7-24
UMP (M) 7-24
Not Jump (NIMP) 7-24
Converge Stage (CV) and Converge Jump (CVIMP)t 7-25
Block Call (BCALL)ttt e e 7-27
BlOCK (BLK) . . ottt 7-27
Block ENd (BEND)ttt 7-27
Stage View in DireCtSOFT 7-28
Questions and Answers about Stage Programming 7-29
Chapter 8: PID Loop Operationccoiiuunnn... 8-1
DL250-1 and DL260 PID Loop Featuresciiiiiniiinnnnn. 8-2
Main FEatUIES o 8-2
Introduction to PID Control 8-4
Why use PID Control? 8-4
Introducing DL205 PID Control 0 . 8-6
Process Control Definitions 8-8
PID Loop Operationc.iiuinitiiiiniiiiiiiiiiiiiiieennnnnen, 8-9
Position Form of the PID Equation 8-9
Reset Windup Protection e 8-10
Freeze Biasot 8-11
Adjusting the Bias i 8-11

Table of Contents

Step Bias Proportional to Step Change in SP 8-12
Eliminating Proportional, Integral or Derivative Action 8-12
Velocity Form of the PID Equation 8-12
Bumpless Transfer 8-13
LoOPp AlarmsS . . 8-13
Loop Operating Modes e e e 8-14
Special Loop Calculations e 8-14
Ten Steps to Successful Process Control 8-16
PID LOOP SetUPottt ittt ittt e 8-18
Some Things to Do and Know Before Starting 8-18
PID Error FIags oo 8-18
Establishing the Loop Table Size and Location 8-18
Loop Table Word Definitions i 8-20
PID Mode Setting 1 Bit Descriptions (Addr +00) 8-21
PID Mode Setting 2 Bit Descriptions (Addr + 01) 8-22
Mode/Alarm Monitoring Word (Addr + 06) i 8-23
Ramp/Soak Table Flags (Addr + 33) 8-23
Ramp/Soak Table Location (Addr + 34) 8-24
Ramp/Soak Table Programming Error Flags (Addr + 35) 8-24
PV Auto Transfer (Addr + 36) from I/O Module Base/Slot/Channel Option 8-25
PV Auto Transfer (Addr + 36) from V-memory Option 8-25
Control Output Auto Transfer (Addr + 37) e 8-25
Configure the PID LOOP oo i it e e e e 8-26
PIDLOOP TUNING . . oot e ettt et it e e 8-41
OPEN-LOOP TSt . . o ot 8-41
Manual Tuning Procedure 8-42
Alternative Manual Tuning Procedures by Others 8-44
Tuning PID Controllers 8-44
AUtO TUNING Procedure 8-45
Use DirectSOFT Data View with PID View 8-49
Open a New Data View WINdOW e e 8-49
OPEN PID VieW . . oo 8-50
Using the Special PID Features it iiiiinnnnnn 8-52
How to Change LOOp MOdESot e e e 8-52
Operator Panel Control of PID Modes 8-53
PLC Modes Effect on Loop Modes i 8-53

X1V I DL205 PLC User Manual, 4th Edition, Rev. A

Table of Contents

|

Loop Mode OVErride e 8-53
PV Analog Filter 8-54
Creating an Analog Filter in Ladder Logic, 8-55
Use the DirectSOFT 5 Filter Intelligent Box (IBOX) Instruction 8-56
FilterB EXample 8-56
Ramp/Soak Generator i 8-57
INtrOdUCTION . . . oo 8-57
Ramp/Soak Table 8-58
Ramp/Soak Table Flags e 8-60
Ramp/Soak Generator Enable 8-60
Ramp/Soak Controls 8-60
Ramp/Soak Profile Monitoring 8-61
Ramp/Soak Programming Errors 8-61
Testing Your Ramp/Soak Profile 8-61
DirectSOFT Ramp/Soak Example i, 8-62
Setup the Profile in PID Setupo 8-62
Program the Ramp/Soak Control in Relay Ladder 8-62
Testthe Profile 8-63
Cascade Control i i i i 8-64
INtrodUCTION . . o oo 8-64
Cascaded Loops in the DL205 CPU e e 8-65
Tuning Cascaded LOOPS . . . v v vt 8-66
Time-Proportioning Control i 8-67
On/Off Control Program Example i 8-68
Feedforward Control ittt 8-69
Feedforward Example 8-70
PID Example Programttt 8-71
Program Setup for the PID LOOP ottt e 8-71
Troubleshooting Tipso i i 8-74
Glossary of PID Loop Terminologyco i iiinniennn. 8-76
Bibliography i e 8-78
Chapter 9: Maintenance and Troubleshooting 9-1
Hardware Maintenancet ttieeeeeeennnnnnnnns 9-2

DL205 PLC User Manual, 4th Edition, Rev. A I XV

Table of Contents

[
Standard MaintenanCe 9-2
Air Quality MaintenanCet 9-2
Low Battery Indicator 9-2
CPU Battery Replacement e 9-2
Diagnostics e e e e e e 9-3
DIagNOStICS . . o ot 9-3
Fatal ErrOrS . . o 9-3
Non-fatal Errors 9-3
Finding Diagnostic Information 9-4
V-memory Locations Corresponding to Error Codes 9-4
Special Relays (SP) Corresponding to Error Codes 9-5
/O Module COOESo 9-6
Error Message Tables 9-7
System Error COAeSo ot 9-8
Program Error COOES oo ot 9-9
CPUError Indicatorsotttiiiiiinnntnnnneeeeeennnnnnnnnnnns 9-10
PWR Indicator ittt ittt e e 92-11
INCorrect Base POWer 9-11
Faulty CPU . ..o 9-11
Device or Module causing the Power Supply to Shutdown 9-12
Power Budget Exceeded 9-12
RUN INiCator 9-13
CPU INdIiCator e 9-13
BATT INdiCator 9-13
Communications Problems i 9-13
I/0 Module Troubleshooting i, 9-14
Things to Check 9-14
I/O DIagnoStiCS . . . o it i 9-14
Some QUICK STePS . . . oot 9-15
Testing OULPUL POINTSo s 9-16
Handheld Programmer Keystrokes Used to Test an Output Point 9-16
Noise Troubleshooting i, 9-17
Electrical Noise Problems 9-17
Reducing Electrical NOISe 9-17
Machine Startup and Program Troubleshooting 9-18

XVI I DL205 PLC User Manual, 4th Edition, Rev. A

Table of Contents

ad

Syntax CheCK 9-18
Duplicate Reference Check 9-19
TEST-PGM and TEST-RUN Modes s 9-20
Special INStruCtioNS 9-22
Run Time Edits 9-24
Forcing I/0 POINtS 9-26
Regular Forcing with DIreCt ACCESS v vttt e e e e e 9-28
Bit Override FOICING oo e 9-29
Bit Override INdiCators 9-29
Appendix A: Auxiliary Functions A-1
Introduction e e e e A-2
What are Auxiliary FUNCLIONS? e A-2
Accessing AUX Functions via DirectSOFTt A-3
Accessing AUX Functions via the Handheld Programmer A-3
AUX 2* — RLL Operationsiiiininiiiiiiiiiiiiiennnnnen. A-4
AUX 21-24 A-4
AUX 21 Check Program A-4
AUX 22 Change Referencet A-4
AUX 23 Clear Ladder Range i e A-4
AUX 24 Clear Ladders A-4
AUX 3* — V-memory Operationsttt iiiinnnnne.. A-5
AUX 3L L A-5
AUX 31 Clear V-MEMOIY . .o oot e e e e e e e e e e A-5
AUX 4* — I/O Configuration e A-5
AUX 41-46 . .. A-5
AUX 41 Show I/O Configuration A-5
AUX 42 1/0O DiagnostiCs . . . o v vttt A-5
AUX 44 Power-up Configuration Check A-5
AUX 45 Select Configuration A-6
AUX 46 to I/0O Configuration e A-6
AUX 5* — CPU Configuration i, A-7
AUX BL-5C . A-7
AUX 51 Modify Program Name e A-7
AUX 52 Display/Change Calendar A-7
AUX 53 Display Scan Time e e A-8

DL205 PLC User Manual, 4th Edition, Rev. A XVII

Table of Contents

[

AUX 54 Initialize Scratchpad A-8
AUX 55 Set Watchdog Timer e A-8
AUX 56 CPU Network Addresso e A-8
AUX 57 Set Retentive RanNgest e A-9
AUX B8 Test Operationst e e e e A-9
AUX 59 Bit OVerrideo A-10
AUX 5B Counter Interface Configuration A-10
AUX 5C Display Error History A-11
AUX 6* — Handheld Programmer Configuration A-12
AUX 61,62 and B5 A-12
AUX 61 Show Revision Numbers e A-12
AUX 62 Beeper On/Off A-12
AUX 65 Run Self DiagnostiCs oot A-12
AUX 7% - EEPROM Operationsuuiuiiiiiiieenennennnnn. A-12
AUX 7L - 76 o A-12
Transferrable Memory Areast A-13
AUX 71 CPU to HPP EEPROM e e A-13
AUX 72 HPP EEPROM t0o CPU e e A-13
AUX 73 Compare HPP EEPROM to CPU i A-13
AUX 74 HPP EEPROM Blank Check i A-13
AUX 75 Erase HPP EEPROM e A-13
AUX 76 Show EEPROM TYPEo ottt e A-13
AUX 8* — Password Operationsiiiuiiiiiiiinnnnne.. A-14
AUX Bl - 83 .. e A-14
AUX 81 Modify Password e A-14
AUX 82 Unlock CPU e A-14
AUX 83 LoCK CPU ... e A-14
Appendix B: DL205 Error Codes B-1
Appendix C: Instruction Execution Times C-1
Introduction e e e e e e e e c-2
V-Memory Data Registers e C-2
V-Memory Bit Registers C-2
How to Read the Tables C-2
Boolean Instructions e e e Cc-3

XVII I DL205 PLC User Manual, 4th Edition, Rev. A

Table of Contents

Comparative Boolean Instructions Cc-4 "
Bit of Word Boolean Instructions it Cc-13
Immediate Instructions L e Cc-14
Timer, Counter and Shift Register Instructions C-15
Accumulator Data Instructions i i c-16
Logical Instructions e Cc-18
Math Instructions i e e C-20
Differential Instructions i Cc-23
Bit Instructions i e e e e e C-24
Number Conversion Instructions i ... C-25
Table Instructions it it i Cc-25
CPU Control Instructions ittt iiiiiiiiinneennn. Cc-27
Program Control Instructions i, Cc-27
Interrupt Instructions i e C-28
Network Instructions i e C-28
Intelligent I/O Instructions i, C-28
Message Instructionsttt Cc-29
RLLPLUS INStructionsottt ittt ittt et et ee e aennn Cc-29
DRUM INStructions ittt ittt it i Cc-29
Clock / Calender Instructions i, Cc-30
Modbus Instructions i e e e C-30
ASCILINStructionst ittt it e e Cc-30
Appendix D: Special Relays it D-1
DL230 CPU Special Relays ittt D-2
Startup and Real-Time Relays D-2
CPU Status Relays D-2
System MONItOriNgo D-2
AcCUuMUIAtOr STATUSo D-3
Counter Interface Module Relays i D-3
Equal Relays for Multi-step Presets with Up/Down Counter #1 / DL230
(for use with a Counter Interface Module) D-4

DL205 PLC User Manual, 4th Edition, Rev. A I XX

Table of Contents

[

DL240/DL250-1/DL260 CPU Special Relays, D-5
Startup and Real-Time Relays e D-5
CPU Status Relays e e e e D-5
System Monitoring Relays D-6
Accumulator Status Relays e D-6
Counter Interface Module Relays D-7
Communications Monitoring Relays D-8
Equal Relays for Multi-step Presets with Up/Down Counter #1
(for use with a Counter Interface Module) D-9
Equal Relays for Multi-step Presets with Up/Down Counter #2
(for use with a Counter Interface Module) D-10

Appendix E: PLCMemoryottt E-1

DL205 PLC M@MOKY . . oottt ittt ittt ittt ittt ittt ettt e i E-2

Non-volatile V-memory in the DL205 e E-3
Appendix F: DL205 Product Weight Table F-1
DL205 Product Weight Table i, F-2
Appendix G: ASCll Table i .. G-1
ASCll Conversion Table i i G-2
Appendix H: Numbering Systems H-1

Introduction e e e H-2

Binary Numbering System H-2

Hexadecimal Numbering System i i, H-3

Octal Numbering System i i H-4

Binary Coded Decimal (BCD) Numbering System H-5

Real (Floating Point) Numbering System, H-5

BCD/Binary/Decimal/Hex/Octal -What is the Difference? H-6

Data Type Mismatch i H-7

Signed vs. Unsigned Integers i i i, H-8

AutomationDirect.com Products and Data Types, H-9

XX I DL205 PLC User Manual, 4th Edition, Rev. A

Table of Contents

ad
DIreCtLOGIC PLCS . . vt H-9
C-more/C-more Micro-Graphic Panels H-9
Appendix I: European Union Directives (CE) I-1
European Union (EU) Directivest iiiiiinnn. 1-2
Member CoUuNtrieS e -2
Applicable DIFeCtiVES -2
ComplianCe -2
General Safety -3
Special Installation Manual I-4
Other Sources of Information -4
Basic EMC Installation Guidelines 0 0 i, -4
ENCIOSUIES . . . o I-4
AC Mains FIlters o I-5
Suppression and FUSINGot I-5
Internal Enclosure Grounding I-5
Equi—potential Grounding I-6
Communications and Shielded Cables I-6
Analog and RS232 Cables I-7
Shielded Cables within Enclosures I-7
Analog Modules and RF Interference i -8
Network ISsolation -8
DC Powered VEISIONSttt e e -8
Items Specific to the DL205 e 1-9
Index

DL205 PLC User Manual, 4th Edition, Rev. A I XXI

Table of Contents
u

Notes

XXii I DL205 PLC User Manual, 4th Edition, Rev. A

Chapter 7: RLL"s Stage Programming

The state transition diagram to the right is a picture
of the solution we need to create. The beauty of it is
this: it expresses the problem independently of the
programming language we may use to realize it. In
other words, by drawing the diagram we have already
solved the control problem!

First, we'll translate the state diagram to traditional
RLL. Then we'll show how easy it is to translate the
diagram into a stage programming solution.

RLL Equivalent

The RLL solution is shown to the right. It consists of
a self-latching motor output coil, YO. When the On
pushbutton (XO0) is pressed, output coil YO turns on
and the YO contact on the second row latches itself
on. So, X0 sets the latch YO on, and it remains on
after the X0 contact opens.

When the Off pushbutton (X1) is pressed, it opens
the normally-closed X1 contact, which resets the
latch. Motor output YO turns off.

Stage Equivalent

The stage program solution is shown to the right.
The two inline stage boxes SO and S1 correspond to
the two states OFF and ON. The ladder rung(s)
below each stage box belong to each respective stage.
This means that the PLC only has to scan those rungs
when the corresponding stage is active!

For now, let’s assume we begin in the OFF State, so
stage SO is active. When the On pushbutton (XO0) is
pressed, a stage transition occurs. The JMP S1
instruction executes, which simply turns off the Stage
bit SO and turns on Stage bit S1. So on the next PLC
scan, the CPU will not execute Stage SO, but will
execute stage S1!

In the On State (Stage S1), we want the motor to
always be on. The special relay contact SP1 is defined
as always on, so YO turns the motor on.

X0

o>

Output equation YO = ON

| Set Reset Output
\
XO\ JXl (YO
{ /] (oun
Latch
_{Yo}i
\
\
|
|
\
SG
SO OFF State
Transition
X0 S1
— | (mp)
G, ON State
Output
SP1 Always On)
— | (ouD
Transition
X1 SO
— | (mp)

When the Off pushbutton (X1) is pressed, a transition back to the Off State occurs. The IMP
S0 instruction executes, which simply turns off the Stage bit S1 and turns on Stage bit SO. On
the next PLC scan, the CPU will not execute Stage S1, so the motor output YO will turn off.

The Off state (Stage 0) will be ready for the next cycle.

-4 I DL205 User Manual, 4th Edition, Rev. A

Chapter 7: RLL""s Stage Programming

ad

Let's Compare

Right now, you may be thinking “I don't see the big advantage to Stage Programming... in

fact, the stage program is longer than the plain RLL program”. Well, now is the time to

exercise a bit of faith. As control problems grow in complexity, stage programming quickly

out-performs RLL in simplicity, program size, etc.

For example, consider the diagram below. Notice how easy ‘

it is to correlate the OFF and ON states of the state sG

transition diagram below to the stage program at the right. S0 | OFF State

Now, we challenge anyone to %XO :jj@

easily identify the same states

in the RLL program on the sG ON Stat

previous page! Slj e

SP1 YO

Initial Stages X0 / 0w

At powerup and Program-to-

Run Mode transitions, the @ 1 @

PLC always begins with all

normal stages (SG) off. So, the stage programs shown so far
have actually had no way to get started (because rungs are
not scanned unless their stage is active).

Assume that we want to always begin in the Off state
(motor off), which is how the RLL program works. The
Initial Stage (ISG) is defined to be active at powerup. In
the modified program to the right, we have changed stage
S0 to the ISG type. This ensures the PLC will scan
contact X0 after powerup, because Stage SO is active.
After powerup, an Initial Stage (ISG) works just like any
other stage!

We can change both programs so that the motor is ON at
powerup. In the RLL below, we must add a first scan relay
SPO, latching YO on. In the stage example to the right, we
simply make Stage S1 an initial stage (ISG) instead of SO.

Powerup in ON State

) X1 Yo
1 /1 ouD)
YO)
First Scan
—
SPO
—

I Powerup in OFF State

X1 S0
I L

ISG »
S0 Initial Stage

X0 S1
G

SG
S1

SP1 YO

H
G

} Powerup in ON State
SG
SO
X0 S1
W

ISG iti
21 Initial Stage

SP1 YO

W

X1 SO
e —
|

NOTE: If the I1SG is within the retentive range for stages, the ISG will remain in the state it was in before

power down and will NOT turn itself on during the first scan.

DL205 User Manual, 4th Edition, Rev. AI /-5

Chapter 7: RLL"s Stage Programming

We can mark our desired powerup state as shown to Powerup %0
the right, which helps us remember to use the

appropriate Initial Stages when creating a stage
program. It is permissible to have as many initial X1

stages as the process requires.

What Stage Bits Do

You may recall that a stage is a section of ladder program which is either active or inactive at a
given moment. All stage bits (SO to Sxxx) reside in the PLC’s image register as individual
status bits. Each stage bit is either a boolean O or 1 at any time.
Program execution always reads ladder rungs from top to bottom, and from left to right. The
drawing below shows the effect of stage bit status. The ladder rungs below the stage
instruction continuing until the next stage instruction or the end of program belong to stage
0. Its equivalent operation is shown on the right. When SO is true, the two rungs have power
flow.

« If Stage bit SO = 0, its ladder rungs are not scanned (executed).

o If Stage bit SO = 1, its ladder rungs are scanned (executed).

Actual Program Appearance Functionally Equivalent Ladder
\ \
\ \
SG S0
S0
> >
> (D
| } | (includes all rungs in stage)
Stage Instruction Characteristics e,
The inline stage boxes on the left power rail divide the ladder ¥ 5
- ——<
program rungs into stages. Some stage rules are: L ;
 Execution — Only logic in active stages are executed on any
scan. SG
. e . s
« Transitions — Stage transition instructions take effect on the 1
next occurrence of the stages involved. i —
« Octal numbering — Stages are numbered in octal, like I/0 HEC>
points, etc. So “S8” is not valid. <
« Total Stages — The maximum number of stages is CPU- S2
dependent.)
* No duplicates — Each stage number is unique and can be used S E——D)
just once.
i =
« Any order — You can skip numbers and sequence the stage Eno

numbers in any order. \

« Last Stage — The last stage in the ladder program includes all
rungs from its stage box until the end coil.

7—6 I DL205 User Manual, 4th Edition, Rev. A

Chapter 7: RLL""s Stage Programming

Using the Stage Jump Instruction for State Transitions

Stage Jump, Set, and Reset Instructions
The Stage JIMP instruction we have used deactivates the stage in which the instruction occurs,
while activating the stage in the JMP instruction. Refer to the state transition shown below.
When contact X0 energizes, the state transition from SO to S1 occurs. The two stage examples
shown below are equivalent. So, the Stage Jump instruction is equal to a Stage Reset of the
current stage, plus a Stage Set instruction for the stage to which we want to transition.

X0
| |
SG SG

SO SO

X0 s1 Equivalent X0 so
F—Cwp) ——1—RsD 7
S1
| | L (seT)

Please Read Carefully — The jump instruction is easily misunderstood. The “jump” does not
occur immediately like a GOTO or GOSUB program control instruction when executed.
Here's how it works:

= The jump instruction resets the stage bit of the stage in which it occurs. All rungs in the stage still
finish executing during the current scan, even if there are other rungs in the stage below the jump
instruction!

« The reset will be in effect on the following scan, so the stage that executed the jump instruction
previously will be inactive and bypassed.

 The stage bit of the stage named in the Jump instruction will be set immediately, so the stage will be
executed on its next occurrence. In the left program shown below, stage S1 executes during the same
scan as the JMP S1 occurs in SO. In the example on the right, Stage S1 executes on the next scan
after the JMP S1 executes, because stage S1 is located above stage SO.

SG SG Executes on next
S0 S1 scan after Jmp
%xo}—(m) s Yo

e — F——uwp
SG Executes on same SG
S1 scan as Jmp S0
s1 Y0 %XO 51)
N C L e
I

NOTE: Assume we start with Stage 0 active and Stage 1 inactive for both examples.

DL205 User Manual, 4th Edition, Rev. AI 71—/

Chapter 7: RLL"s Stage Programming

Stage Program Example: Toggle On/Off Lamp Controller

A 4-State Process

. . Inputs Outputs
In the process shown to the right, we use an ordinary

momentary pushbutton to control a light bulb. The Toggle R -
ladder program will latch the switch input, so that we 5o X0 Ladder |vo

will push and release to turn on the light, push and Program
release again to turn it off (sometimes called toggle

function). Sure, we could buy a mechanical switch with

the alternate on/off action built in... However, this Powerup %0

example is educational and also fun! v

Next we draw the state transition diagram. A typical first @ A’@
approach is to use X0 for both transitions (like the

example shown to the right). However, this is incorrect Output equation: YO = ON
(please keep reading).

Note that this example differs from the motor example, because now we have only one
pushbutton. When we press the pushbutton, both transition conditions are met. We would
transition around the state diagram at top speed. If implemented in Stage, this solution would
flash the light on or off each scan (obviously undesirable)!

The solution is to make the push and the release of the pushbutton separate events. Refer to
the new state transition diagram below. At powerup we enter the OFF state. When switch X0
is pressed, we enter the Press-ON state. When it is released, we enter the ON state. Note that
X0 with the bar above it denotes X0 NOT.

M

Powerup

'SGSO OFF State
X0 S1
H ———(mp)
Push-OFF
v SG, Push-On State
Output equation: YO = ON X0 S2

When in the ON state, another push and release cycle R e €. ()

similarly takes us back to the OFF state. Now we have

two unique states (OFF and ON) used when the G ON State
i . . . S2
pushbutton is released, which is what was required to Output
solve the control problem. SP1 YO
i —— V)

The equivalent stage program is shown to the right. The

desired powerup state is OFF, so we make SO an initial X0 3
stage (ISG). In the ON state, we add special relay R (LU
contact SP1, which is always on. =

. 3 Push-Off State
Note that even as our programs grow more complex, it
is still easy to correlate the state transition diagram with X0 S0
the stage program! 0w

7—8 I DL205 User Manual, 4th Edition, Rev. A

Chapter 7: RLL""s Stage Programming
]

Four Steps to Writing a Stage Program

By now, you've probably noticed that we follow the same steps to solve each example
problem. The steps will probably come to you automatically if you work through all the
examples in this chapter. It’s helpful to have a checklist to guide us through the problem
solving. The following steps summarize the stage program design procedure:

1. Write a Word Description of the application.
Describe all functions of the process in your own words. Start by listing what happens first,
then next, etc. If you find there are too many things happening at once, try dividing the
problem into more than one process. Remember, you can still have the processes
communicate with each other to coordinate their overall activity.

2. Draw the Block Diagram.
Inputs represent all the information the process needs for decisions, and outputs connect to
all devices controlled by the process.

» Make lists of inputs and outputs for the process.

« Assign 1/0 point numbers (X and Y) to physical inputs and outputs.

3. Draw the State Transition Diagram.
The state transition diagram describes the central function of the block diagram, reading
inputs and generating outputs.

« ldentify and name the states of the process.
« |dentify the event(s) required for each transition between states.
« Ensure the process has a way to re-start itself, or is cyclical.
» Choose the powerup state for your process.
 Write the output equations.
4. Write the Stage Program.
Translate the state transition diagram into a stage program.

« Make each state a stage. Remember to number stages in octal. Up to 256 total stages are available in
the DL230 CPU. Up to 512 total stages are available in the DL240 CPU. Up to 1024 total stages
are available in the DL250-1 and DL260 CPUs.

« Put transition logic inside the stage which originates each transition (the stage each arrow points
away from).

» Use an initial stage (1ISG) for any states that must be active at powerup.
« Place the outputs or actions in the appropriate stages.

You will notice that Steps 1 through 3 prepare us to write the stage program in Step 4.
However, the program virtually writes itself because of the preparation beforehand. Soon you
will be able to start with a word description of an application and create a stage program in
one easy session!

DL205 User Manual, 4th Edition, Rev. AI 79

Chapter 7: RLL"s Stage Programming
=

Stage Program Example: A Garage Door Opener

Garage Door Opener Example
In this next stage programming example we will
create a garage door opener controller. Hopefully
most readers are familiar with this application, and
we can have fun besides!

The first step we must take is to describe how the
door opener works. We will start by achieving the
basic operation, waiting to add extra features later
(stage programs are very easy to modify).

Our garage door controller has a motor which raises
or lowers the door on command. The garage owner
pushes and releases a momentary pushbutton once to

raise the door. After the door is up, another push-
release cycle will lower the door.

In order to identify the inputs and outputs of the

system, it's sometimes helpful to sketch its main U limit switch

components, as shown in the door side view to the =

right. The door has an up limit and a down limit Motor ~— Raise
switch. Each limit switch closes only when the door ~— Lower .

has reached the end of travel in the corresponding
direction. In the middle of travel, neither limit switch
is closed.

The motor has two command inputs: raise and lower.
B «— Door

When neither input is active, the motor is stopped.
Command

The door command is a simple pushbutton. Whether
wall-mounted as shown, or a radio-remote control, all

door control commands logically OR together as one Down limit switch &5

pair of switch contacts.

el

Draw the Block Diagram
The block diagram of the controller is shown to the
right. Input X0 is from the pushbutton door control. ~ Inputs

Outputs

Input X1 energizes when the door reaches the full up Toggle

position. Input X2 energizes when the door reaches ~ —o5 o—X0+
the full down position. When the door is positioned Up limit Ladder
between fully up or down, both limit switches are Program

—0 O— "=
open.
The controller has two outputs to drive the motor.
Y1 is the up (raise the door) command, and Y2 is the
down (lower the door) command.

Down limit
_ 55 X2

To motor:
RE Raise

vz Lower

7-10 I DL205 User Manual, 4th Edition, Rev. A

Chapter 7: RLL""s Stage Programming

Draw the State Diagram

Now we are ready to draw the state transition diagram. Like the previous light bulb controller
example, this application also has only one switch for the command input. Refer to the figure

below.

« When the door is down (DOWN state), nothing happens until X0 energizes. Its push and release

brings us to the RAISE state, where output Y1 turns on and causes the mo

tor to raise the door.

« We transition to the UP state when the up limit switch (X1) energizes, and turns off the motor.
« Then nothing happens until another X0 press-release cycle occurs. That takes us to the LOWER

state, turning on output Y2 to command the motor to lower the door. We
DOWN state when the down limit switch (X2) energizes.

Powerup

Output equations: Y1 = Raise Y2 = Lower

The equivalent stage program is shown to the right. For now, we
will assume the door is down at powerup, so the desired powerup
state is DOWN. We make SO an initial stage (1SG). Stage SO
remains active until the door control pushbutton activates. Then
we transition (JMP) to Push-UP stage, S1.

A push-release cycle of the pushbutton takes us through stage S1
to the RAISE stage, S2. We use the always-on contact SP1 to
energize the motor’s raise command, Y1. When the door reaches
the fully-raised position, the up limit switch X1 activates. This
takes us to the UP Stage S3, where we wait until another door
control command occurs.

In the UP Stage S3, a push-release cycle of the pushbutton will
take us to the LOWER Stage S5, where we activate Y2 to
command the motor to lower the door. This continues until the
door reaches the down limit switch, X2. When X2 closes, we
transition from Stage S5 to the DOWN stage SO, where we began.

SG

NOTE. The only thing special about an initial stage (1SG) is that it is
automatically active at powerup. Afterwards, it is just like any other.

DL205 User Manual, 4th Ed

1
S3 UP State

transition back to the

DOWN State

X0 S1

Rl —

Push-UP State

P

52 RAISE State

SP1 Y1
— F————uw

X S3

T E— V2

X0 S4
i —

D

SC,, Push-DOWN State
SG
- LOWER State

SP1 Y2
R 1))

S0

X2
O
\
[

ition, Rev. AI 7—11

Chapter 7: RLL"s Stage Programming

Add Safety Light Feature

Next we will add a safety light feature to the door
opener system. It’s best to get the main function
working first as we have done, then adding the
secondary features.

The safety light is standard on many commercially-
available garage door openers. It is shown to the
right, mounted on the motor housing. The light
turns on upon any door activity, remaining on for
approximately 3 minutes afterwards.

This part of the exercise will demonstrate the use of
parallel states in our state diagram. Instead of using
the JMP instruction, we will use the set and reset
commands.

Modify the Block Diagram and State Diagram

To control the light bulb, we add an output to our

controller block diagram, shown to the right, Y3 is the

light control output.

In the diagram below, we add an additional state
called “LIGHT”. Whenever the garage owner presses
the door control switch and releases, the RAISE or
LOWER state is active and the LIGHT state is
simultaneously active. The line to the Light state is
dashed, because it is not the primary path.

:
-
Qi]—[

x Safety light

Down limit

Inputs

Outputs

Toggle
—0 0—-

Up limit

—0O O——»

YL, Raise

Y2 Lower

Y3 _ |ight

We can think of the Light state as a parallel process to the raise and lower state. The paths to
the Light state are not a transition (Stage JMP), but a State Set command. In the logic of the
Light stage, we will place a three-minute timer. When it expires, timer bit TO turns on and

resets the Light stage. The path out of the Light stage goes nowhere, indicating the Light stage

becomes inactive, and the light goes out!

712 I DL205 User Manual, 4th Edition, Rev. A

Output equations:

Y1 = RAISE
Y2 = LOWER
Y3 = LIGHT

Chapter 7: RLL""s Stage Programming

ad
Using a Timer Inside a Stage
The finished modified program is shown to the right. The
shaded areas indicate the program additions.
In the Push-UP stage S1, we add the Set Stage Bit S6 1
instruction. When contact X0 opens, we transition from S1 | 1SG DOWN State
and go to two new active states: S2 and S6. In the Push- 0 o
DOWN state S4, we make the same additions. So, any time L (D)
someone presses the door control pushbutton, the light turns
on. SC, Push-UP State
Most new stage programmers would be concerned about X0 52
where to place the Light Stage in the ladder, and how to IMP)
number it. The good news is that it doesn't matter! s6
» Choose an unused Stage number, and use it for the new stage - SET)
and as the reference from other stages. S2 RAISE State
 Placement in the program is not critical, so we place it at the SP1 vi
end o

You might think that each stage has to be directly under the X1 s3
stage that transitions to it. While it is good practice, it is not H ——Cwmp)

required (that’s good, because our two locations for the Set o
S6 instruction make that impossible). Stage numbers and s3 UP State
how they are used determines the transition paths. X0 s4
In stage S6, we turn on the safety light by energizing Y3. i E—]5).
Special relay contact SP1 is always on. Timer TO times at 0.1 s
second per count. To achieve 3 minutes time period, we sS4 Push-DOWN State
calculate: X0 S5
%/}—E IMP)
K = 3 min. x 60 sec/min S6
0.1 sec/count G SET)
K = 1800 counts S5 LOWER State
SP1 Y2
The timer has power flow whenever stage S6 is active. The —H ——(oun

corresponding timer bit TO is set when the timer expires. So X2 S0
three minutes later, TO=1 and the instruction Reset S6 causes —H ——Cwmp)
the stage to be inactive.

SG
While Stage S6 is active and the light is on, stage transitions S6 LIGHT State
in the primary path continue normally and independently of sP1 Y3
Stage 6. That is, the door can go up, down, or whatever, but - ouT)
the light will be on for precisely 3 minutes.
TMR TO
K1800

TO S6
— F——GsD
I
I

DL205 User Manual, 4th Edition, Rev. AI 7-13

Chapter 7: RLL"s Stage Programming

Add Emergency Stop Feature

Some garage door openers today will detect an object under
the door. This halts further lowering of the door. Usually
implemented with a photocell (“electric-eye”), a door in the ggﬁ
process of being lowered will halt and begin raising. We will ggg
define our safety feature to work in this way, adding the —

input from the photocell to the block diagram as shown to N
the right. X3 will be on if an object is in the path of the

door. —

Next, we make a simple addition to the state transition Inputs Outputs
diagram, shown in shaded areas in the figure below. Note ~ Toggle v
the new transition path at the top of the LOWER state. If USIicmit] = Raise
we are lowering the door and detect an obstruction (X3), 55 X1 | .0 Y2

we then jump to the Push-UP State. We do this instead of pown imit | Program
jumping directly to the RAISE state, to give the Lower —5 0%, Y3~ Light
output Y2 one scan to turn off, before the Raise output Y1 Obstruction

energizes. oo

Exclusive Transitions
It is theoretically possible the down limit (X2) and the obstruction input (X3) could energize
at the same moment. In that case, we would “jump” to the Push-UP and DOWN states
simultaneously, which does not make sense.
|

Instead, we give priority to the obstruction by |
changing the transition condition to the DOWN sG

LOWER State

state to [X2 AND NOT X3]. This ensures the S5

obstruction event has the priority. The sp1 v2
modifications we must make to the LOWER Stage | (ouD)
(S5) logic are shown to the right. The first rung | ~
remains unchanged. The second and third rungs x2 x3 [DOWN SO
implement the transitions we need. Note the /"GP
opposite relay contact usage for X3, which ensures X3 to Push-UP S2
the stage will execute only one of the IMP . (v

instructions. ‘

714 I DL205 User Manual, 4th Edition, Rev. A

Chapter 7: RLL""s Stage Programming
]

Stage Program Design Considerations

Stage Program Organization
The examples so far in this chapter used one self-contained state diagram to represent the
main process. However, we can have multiple processes implemented in stages, all in the same
ladder program. New stage programmers sometimes try to turn a stage on and off each scan,
based on the false assumption that only one stage can be on at a time. For ladder rungs that
you want to execute each scan, put them in a stage that is always on.

The following figure shows a typical application. During operation, the primary
manufacturing activity Main Process, Powerup Initialization, E-Stop and Alarm Monitoring,
and Operator Interface are all running. At powerup, four initial stages shown begin operation.

Main Process

Powerup Initialization E-Stop and Alarm Monitoring Operator Interface .
o)

In a typical application, the separate stage sequences above operate as follows:

« Powerup Initialization — This stage contains ladder rung tasks performed once at powerup. Its last
rung resets the stage, so this stage is only active for one scan (or only as many scans that are
required)

« Main Process — This stage sequence controls the heart of the process or machine. One pass through
the sequence represents one part cycle of the machine, or one batch in the process.

« E-Stop and Alarm Monitoring — This stage is always active because it is watching for errors that
could indicate an alarm condition or require an emergency stop. It is common for this stage to reset
stages in the main process or elsewhere, in order to initialize them after an error condition.

« Operator Interface — This is another task that must always be active and ready to respond to an
operator. It allows an operator interface to change modes, etc., independently of the current main
process step.

AIthoygh_we have separate processes, ther_e can be Operator Interface
coordination among them. For example, in an error :
condition, the Status Stage may want to @

automatically switch the operator interface to the
status mode to show error information as shown to

the right. The monitor stage could set the stage bit 7

for Status and Reset the stages Control and Recipe.
E-Stop and

Alarm Monitoring

DL205 User Manual, 4th Edition, Rev. AI 7-15

Chapter 7: RLL"s Stage Programming

How Instructions Work Inside Stages

We can think of states or stages as simply dividing up our ladder program as depicted in the
figure below. Each stage contains only the ladder rungs which are needed for the
corresponding state of the process. The logic for transitioning out of a stage is contained
within that stage. It's easy to choose which ladder rungs are active at powerup by using an
“initial” stage type (ISG).

Stage 0 Stage 1

Most instructions work like they do in standard RLL. You can think of a stage like a
miniature RLL program which is either active or inactive.

Output Coils — As expected, output coils in active stages will turn on or off outputs
according to power flow into the coil. However, note the following:

» Outputs work as usual, provided each output reference (such as “Y3”) is used in only one stage.

= Output coils automatically turn off when leaving a stage. However, Set and Reset instructions are
not “undone” when leaving a stage.

» An output can be referenced from more than one stage, as long as only one of the stages is active at
a time.

« If an output coil is controlled by more than one stage simultaneously, the active stage nearest the

bottom of the program determines the final output status during each scan. So, use the OROUT
instruction instead when you want multiple stages to have a logical OR control of an output.

One-Shot or PD coils — Use care if you must use a Positive Differential coil in a stage.
Remember the input to the coil must make a 0-1 transition. If the coil is already energized on
the first scan when the stage becomes active, the PD coil will not work. This is because the
0-1 transition did not occur.

PD coil alternative: If there is a task which you want to do only once (on 1 scan), it can be
placed in a stage which transitions to the next stage on the same scan.

Counter — When using a counter inside a stage, the stage must be active for one scan before
the input to the counter makes a 0—1 transition. Otherwise, there is no real transition and the
counter will not count. The ordinary Counter instruction does have a restriction inside stages:
it may not be reset from other stages using the RST instruction for the counter bit. However,
the special Stage Counter provides a solution (see next paragraph).

Stage Counter — The Stage Counter has the benefit that its count may be globally reset from
other stages by using the RST instruction. It has a count input, but no reset input. This is the
only difference from a standard counter instruction.

Drum — Realize the drum sequencer is its own process, and is a different programming
method than stage programming. If you need to use a drum and stages, be sure to place the
drum instruction in an ISG stage that is always active.

7-16 I DL205 User Manual, 4th Edition, Rev. A

Chapter 7: RLL""s Stage Programming

Stage Counter

ad
Using a Stage as a Supervisory Process
You may recall the light bulb on-off controller
example from earlier in this chapter. For the purpose "y
of illustration, suppose we want to monitor the Toggle 2 -
“productivity” of the lamp process, by counting the 55 X0_| Ladder |vo
number of on-off cycles which occurs. This Program
application will require the addition of a simple
counter, but the key decision is in where to put the
counter.
Powerup l
@ . IS¢, OFF State
Supervisor Process
X0 S1
Sl E—0
Powerup
SC, Push—On State
X0 s2
I E— 1D
. . i SG ON State
New stage programming students will typically try to place S2
the counter inside one of the stages of the process they are SP1 YO
trying to monitor. The problem with this approach is that —H ——(ouD
the stage is active only part of the time. In order for the X0 33
counter to count, the count input must transition from off - D)
to on at least one scan after its stage activates. Ensuring this
requires extra logic that can be tricky. In this case, we only SG83 Push—Off State
need to add another supervisory stage as shown above, to
“watch” the main process. The counter inside the supervisor X0 S0
stage uses the stage bit S1 of the main process as its count —/—0wp
input. Stage bits used as a contact let us monitor a process!
- — ISG Supervisor State
NOTE: Both the Supervisor stage and the OFF stage are initial S4
stages. The supervisor stage remains active indefinitely. s1
|| || SGCNT cTo
\

K5000

The counter in the above example is a special Stage Counter. Note that it does not have a
reset input. The count is reset by executing a Reset instruction, naming the counter bit (CTO
in this case). The Stage Counter has the benefit that its count may be globally reset from
other stages. The standard Counter instruction does not have this global reset capability. You
may still use a regular Counter instruction inside a stage... however, the reset input to the

counter is the only way to reset it.

DL205 User Manual, 4th Edition, Rev. AI =17

Chapter 7: RLL"s Stage Programming
=

Unconditional Outputs

As in most example programs in this chapter sG

and Stage 0 to the right, your application S0

may req'u_ire a particular output to be ON sP1 Yo
unconditionally when a particular stage is — ———————(oun
active. Until now, the examples always use

the SP1 special relay contact (always on) in sG Unconditional

series with the output coils. It’s possible to S1 Output AW
omit the contact, as long as you place any Y0
unconditional outputs first (at the top) of a (ouD
stage section of ladder. The first rung of X0 Y1
Stage 1 does this. — F——(up
WARNING: Unconditional outputs placed sG

elsewhere in a stage do not necessarily remain S2

So, YO status will be the same as Y1 is not

on when the stage is active. In Stage 2 to the X0 vi
right, YO is shown as an unconditional output, _{ OU'D
but its powerflow comes from the rung above. vo
P
correct. / \ (ouD

Power Flow Transition Technique
Our discussion of state transitions has shown how the Stage JMP instruction makes the
current stage inactive and the next stage (named in the JMP) active. As an alternative way to
enter this in DirectSOFT, you may use the power flow method for stage transitions. The main
requirement is the current stage be located directly above the next (jump-to) stage in the
ladder program. This arrangement is shown in the diagram below, by stages SO and S1,

respectively.
o2

SO S0
X0 S1 All other rungs in stage...
sl 0
Equivalent
SG Power flow
S1 transition

Recall the Stage JMP instruction may occur anywhere in the current stage, and the result is
the same. However, power flow transitions (shown above) must occur as the last rung in a
stage. All other rungs in the stage will precede it. The power flow transition method is also
achievable on the handheld programmer, by simply following the transition condition with
the Stage instruction for the next stage.

The power flow transition method does eliminate one Stage JMP instruction, its only
advantage. However, it is not as easy to make program changes as using the Stage JMP.
Therefore, we advise using Stage JMP transitions for most programs.

7-18 I DL205 User Manual, 4th Edition, Rev. A

Chapter 7: RLL""s Stage Programming
]

Parallel Processing Concepts

Parallel Processes
Previously in this chapter we discussed how a state may transition to either one state or
another, called an exclusive transition. In other cases, we may need to branch simultaneously
to two or more parallel processes, as shown below. It is acceptable to use all IMP instructions
as shown, or we could use one JIMP and a Set Stage bit instruction(s) (at least one must be a
JMP, in order to leave S1). Remember that all instructions in a stage execute, even when it
transitions (the JMP is not a GOTO).

Process A

SG Push-On State

X S2

o
sS4

—CQwe

Note that if we want Stages S2 and S4 to energize exactly on the same scan, both stages must 7
be located below Stage S1 in the ladder program (see the explanation at the bottom of page
7-7). Overall, parallel branching is easy!

Converging Processes
Now we consider the opposite case of parallel branching, which is converging processes. This
simply means we stop doing multiple things and continue doing one thing at a time. In the
figure below, processes A and B converge when stages S2 and S4 transition to S5 at some
point in time. So, S2 and S4 are Convergence Stages.

Process B

Process A

‘ (D =Convergence Stage ‘ >®_@

Process B

Convergence Stages (CV)
While the converging principle is simple enough, it brings a new complication. As parallel
230 processing completes, the multiple processes almost never finish at the same time. In other
240 Words, how can we know whether Stage S2 or S4 will finish last? This is an important point,
because we have to decide how to transition to Stage S5.

250-1 o) N o
The solution is to coordinate the transition condition out of Convergence
260 convergence stages. We accomplish this with a stage type 7 Stages
designed for this purpose: the Convergence Stage (type CV). In =
the example to the right, convergence stages S2 and S4 are s4

required to be grouped together as shown. No logic is permitted 3 s
between CV stages! The transition condition (X3 in this case) —H F———Ccvavp)
must be located in the last convergence stage. The transition

condition only has power flow when all convergence stages in S

the group are active.

DL205 User Manual, 4th Edition, Rev. AI 7-19

Chapter 7: RLL"s Stage Programming

[
Convergence Jump (CVIMP)
Recall the last convergence stage only has power flow cv
230 when all CV stages in the group are active. To s2 Convergence
240 complement the convergence stage, we need a new ‘ Jump
jump instruction. The Convergence Jump (CVIMP) Y
250-1 shown to the right will transition to Stage S5 when s4
260 X3 is active (as one might expect), but it also X3 s
automatically resets all convergence stages in the group.] Ccvavp)
This makes the CVIMP jump a very powerful
instruction. Note that this instruction may only be G
used with convergence stages. S5
Convergence Stage Guidelines ‘
The following summarizes the requirements in the use of convergence stages, including some
tips for their effective application:
A convergence stage is to be used as the last stage of a process which is running in parallel to another
process or processes. A transition to the convergence stage means that a particular process is
through, and represents a waiting point until all other parallel processes also finish.

» The maximum number of convergence stages which make up one group is 17. In other words, a
maximum of 17 stages can converge into one stage.

= Convergence stages of the same group must be placed together in the program, connected on the
power rail without any other logic in between.

< Within a convergence group, the stages may occur in any order, top to bottom. It does not matter
which stage is last in the group, because all convergence stages have to be active before the last stage
has power flow.

« The last convergence stage of a group may have ladder logic within the stage. However, this logic
will not execute until all convergence stages of the group are active.

» The convergence jump (CVIMP) is the intended method to be used to transition from the
convergence group of stages to the next stage. The CVIMP resets all convergence stages of the
group, and energizes the stage named in the jump.

* The CVJMP instruction must only be used in a convergence stage, as it is invalid in regular or
initial stages.

« Convergence Stages or CVIMP instructions may not be used in subroutines or interrupt routines.

720 I DL205 User Manual, 4th Edition, Rev. A

Chapter 7: RLL""s Stage Programming

Managing Large Programs

A stage may contain a lot of ladder rungs, or only one or two program rungs. For most
applications, good program design will ensure the average number of rungs per stage will be
small. However, large application programs will still create a large number of stages. We
introduce a new construct which will help us organize related stages into groups called blocks.
So, program organization is the main benefit of the use of stage blocks.

Stage Blocks (BLK, BEND)

A block is a section of ladder program which contains stages. In the figure below, each block
has its own reference number. Like stages, a stage block may be active or inactive. Stages

240 inside a block are not limited in how they may transition from one to another. Note the use
o501 Of stage blocks does not require each stage in a program to reside inside a block, shown below
by the “stages outside blocks”.

230

260

Block 0 Block 1 Block 2

Stages outside blocks: /

s C I

A program with 20 or more stages may be considered large enough to use block grouping
(however, their use is not mandatory). When used, the number of stage blocks should
probably be two or higher, because the use of one block provides a negligible advantage.

A block of stages is separated from other ladder \
logic with special beginning and ending \
instructions. In the figure to the right, the BLK BLK Block Instruction
instruction at the top marks the start of the stage ‘

block. At the bottom, the Block End (BEND)

marks the end of the block. The stages in between SC,

these boundary markers (SO and S1 in this case) Al oth st

and their associated rungs make up the block. = ZEL TS In stage..
Note the block instruction has a reference value e,

field (set to “C0” in the example). The block

instruction borrows or uses a control relay contact |_All other rungs in stage...
number, so that other parts of the program can Block End

control the block. Any control relay number (such as Instruction BEND)
CO) used in a BLK instruction is not available for =

use as a control relay. |

be initial stages. The numbering of stages inside stage blocks can be in any order, and is completely

NOTE: The stages within a block must be regular stages (SG) or convergence stages (CV). So, they cannot
‘ independent from the numbering of the blocks.

DL205 User Manual, 4th Edition, Rev. AI 7121

Chapter 7: RLL"s Stage Programming

Block Call (BCALL)

230
240
250-1
260

The purpose of the Block Call instruction is to activate a stage block. At powerup or upon
Program-to-Run mode transitions, all stage blocks and the stages within them are inactive.
Shown in the figure below, the Block Call instruction is a type of output coil. When the X0
contact is closed, the BCALL will cause the stage block referenced in the instruction (CO0) to
become active. When the BCALL is turned off, the corresponding stage block and the stages
within it become inactive.

We must avoid confusing block call operation with how a “subroutine call” works. After a
BCALL coil executes, program execution continues with the next program rung. Whenever
program execution arrives at the ladder location of the stage block named in the BCALL,
then logic within the block executes because the block is now active. Similarly, do not classify
the BCALL as type of state transition (is not a JMP).

‘ Block CO

X0 co
F——(BcALL . C 3:—:5 P
) Activate
_—
(next rung)

})

When a stage block becomes active, the first stage in the block automatically becomes active
on the same scan. The “first” stage in a block is the one located immediately under the block
(BLK) instruction in the ladder program. So, that stage plays a similar role to the initial type
stage we discussed earlier.

The Block Call instruction may be used in several contexts. Obviously, the first execution of a
BCALL must occur outside a stage block, since stage blocks are initially inactive. Still, the
BCALL may occur on an ordinary ladder rung, or it may occur within an active stage as
shown below. Note that either turning off the BCALL or turning off the stage containing the
BCALL will deactivate the corresponding stage block. You may also control a stage block with
a BCALL in another stage block.

Stage Block
S0

X0 co
H F——Cecad

Al other rungs in stage..

E—C D)
|

NOTE: Stage Block may come before or after the location of the BCALL instruction in the program.

The BCALL may be used in many ways or contexts, so it can be difficult to find the best
usage. Remember the purpose of stage blocks is to help you organize the application problem
by grouping related stages together. Remember that initial stages must exist outside stage
blocks.

=22 I DL205 User Manual, 4th Edition, Rev. A

Chapter 7: RLL""s Stage Programming

RLLPLUS (Stage) Instructions

Stage (SG) ‘
s30 The Stage instructions are used to create structured RLLPLUS

programs. Stages are program segments which can be activated by SG
240 transitional logic, a jump or a set stage that is executed from an Saaa

250-1 active stage. Stages are deactivated one scan after transitional logic, ‘
a jump, or a reset stage instruction is executed.

260

Operand Data Type| DL230 Range DL240 Range DL250-1 Range DL260 Range
aaa aaa aaa aaa

Stage S 0-377 0-777 0-1777 0-1777

The following example is a simple RLLPLYS program. This program utilizes the initial stage,
stage, and jump instruction to create a structured program.

‘ [se |[2> I[sso][o][ent]
1SG S0 [swr [> [xm [o][e
[our J[_=> J[vown] [+ J[o][en]
[s][=[x][1][ent]
0 vio e][>8] [2]Lew
— ") =ioml =]l
X1 s2 [ave [= J[sse][1][ent |
4‘ ’—(SET) [se [> |[sso][1 [ent |
s o Dl)Dml[2 er]
— F——(we) [Cour][2 Jlvown] [+ J[& J[ewr]
[sc J[> [[seo][2 [enr |
SG s1 [sr][= [xaw][s][ent |
[our [> [woun][1 J[2 |[ent]
o " Lswr [>]lxm [7 J[en]
Cavo]2 Jfsse | [J[ev]
B () B e o e
SG S2
%4+XG%44k444444444< Y12
out)
X7 s1 S0
)

DL205 User Manual, 4th Edition, Rev. AI 7-23

Chapter 7: RLL"s Stage Programming

Initial Stage (I1SG)

The Initial Stage instruction is normally used as the first
230 segment of an RLLPLUS program. Initial stages will be active

when the CPU enters the run mode allowing for a starting ——— ISG
240 o . ; Saaa
point in the program. Initial Stages are also activated by
250-1 transitional logic, a jump or a set stage executed from an
260 active stage. Initial Stages are deactivated one scan after
transitional logic, a jump, or a reset stage instruction is
executed. Multiple Initial Stages are allowed in a program.
Operand Data Type | DL230 Range DL240 Range DL250-1 Range DL260 Range
aaa aaa aaa aaa
Stage S 0-377 0-777 0-1777 0-1777

A’%’\

NOTE: If the ISG is within the retentive range for stages, the ISG will remain in the state it was in before
power down and will NOT turn itself on during the first scan.

Jump (JMP)

The Jump instruction allows the program to transition from
230 an active stage which contains the jump instruction to
240 another stage which is specified in the instruction. The jump
will occur when the input logic is true. The active stage that

250-1

260 instruction is executed.

contains the Jump will be deactivated 1 scan after the Jump

S aaa

—<JMP>

Operand Data Type | DL230 Range DL240 Range DL250-1 Range DL260 Range
aaa aaa aaa aaa
Stage S 0-377 0-777 0-1777 0-1777
Not Jump (NJMP)
The Not Jump instruction allows the program to transition
230 from an active stage which contains the jump instruction to S aam

240

another which is specified in the instruction. The jump will

occur when the input logic is off. The active stage that

250-1

contains the Not Jump will be deactivated 1 scan after the
260 Not Jump instruction is executed.

—(NJIMP)

Operand Data Type | DL230 Range DL240 Range DL250-1 Range DL260 Range
aaa aaa aaa aaa
Stage S 0-377 0-777 0-1777 0-1777

124 I DL205 User Manual, 4th Edition, Rev. A

Chapter 7: RLL""s Stage Programming

In the following example, when the CPU begins program execution only 1SG 0 will be active.
When X1 is on, the program execution will jump from Initial Stage O to Stage 1. In Stage 1,
if X2 is on, output Y5 will be turned on. If X7 is on, program execution will jump from Stage

1 to Stage 2. If X7 is off, program execution will jump from Stage 1 to Stage 3.

DirectSOFT

Handheld Programmer Keystrokes

Cse I > sea] [o J[e]
R G | e |
Cove)= o] 2 J[et |
1 s1 SG — || s(se) 1
e) G >] [2 Jlewr]
[our |[= J[voun] [s][ent |
SG s1 [se][= [xn]][7]
[owe J=>J0sse] [2 J[ent |
X2 5 [swer][v J[owe [5]
’—<OUT [sso)][3][ent]
S2
il IMP)
‘ S3
\ NIMP)
Converge Stage (CV) and Converge Jump (CVIMP)
230 The Converge Stage instruction is used to group certain
240 stages together by defining them as Converge Stages. cvV
When all of the Converge Stages within a group become S aaa
250-1 jactive, the CVIMP instruction (and any additional logic in
260 the final CV stage) will be executed. All preceding CV stages
must be active before the final CV stage logic can be
executed. All Converge Stages are deactivated one scan after
the CVIMP instruction is executed.
Additional logic instructions are only allowed following the S aaa

last Converge Stage instruction and before the CVIMP
instruction. Multiple CVJUMP instructions are allowed.

Converge Stages must be programmed in the main body of
the application program. This means they cannot be
programmed in Subroutines or Interrupt Routines.

—(CVJ M P)

Operand Data Type| DL240 Range DL250-1 Range DL260 Range
aaa aaa aaa
Stage S 0-777 0-1777 0-1777

DL205 User Manual, 4th Edition, Rev. AI 7—25

Chapter 7: RLL"s Stage Programming
=

In the following example, when Converge Stages S10 and S11 are both active the CVIJMP
instruction will be executed when X4 is on. The CVIMP will deactivate S10 and S11, and
activate S20. Then, if X5 is on, the program execution will jump back to the initial stage, SO.

[se || = I[sse][o][ent |
[> Jxaw [o et]
ISG) [[our]| = |[voun][o][Ent
Cswe] > J0xaw] [J[evr |
X0 Yo Cow > Jsee] [+ JLew]
—f F——(out) Cowe JC=> Jsea] [+ [o [ent |
. s L > Jeeo] [+ e]
_1X1 e) [sr]l = |[xm][2][enr
<10 [owe || > Jlsee][+ J[2 J[et]
[swrr][c][v]QHS(SG)H 1 [o [ent
e) Cewr) e Il v][>]Esal)1 J[ev]
SG s1 se L =2 [xv][3][ent
[OUT H - HY(OUT)H 3] ENT
- S11 STR 2 [xm][4][et |
—H—< JMP) [seer [¢][v [st][awe |[sse)][2][o][ent |
[se T > ssa] [2 J[o][ent]
ov S0 [swr = J[xm][s][enr]
[owe][= J[seo)][o][enr
cv l S11
3 Y3
— }—(OUT)
x4 S20
— ———cvamp)
SG S20
5)

—H—T(JMP)

1—26 I DL205 User Manual, 4th Edition, Rev. A

Chapter 7: RLL""s Stage Programming

Block Call (BCALL)

The stage block instructions are used to activate a block of C aaa
230 stages. The Block Call, Block, and Block End instructions —(BCALL)
240 must be used together. The BCALL instruction is used to
250-1 activate a stage block. Th_ere are s_everal things you need to
know about the BCALL instruction.
260, Uses CR Numbers — The BCALL appears as an output coil, but does not actually refer to a
Stage number as you might think. Instead, the block is identified with a Control Relay
(Caaa). This control relay cannot be used as an output anywhere else in the program.
e Must Remain Active — The BCALL instruction actually controls all the stages between the
BLK and the BEND instructions even after the stages inside the block have started
executing. The BCALL must remain active or all the stages in the block will automatically
be turned off. If either the BCALL instruction, or the stage that contains the BCALL instruction
goes off, then the stages in the defined block will be turned off automatically.
« Activates First Block Stage — When the BCALL is executed it automatically activates the
first stage following the BLK instructions.
Operand Data Type| DL240 Range DL250-1 Range DL260 Range
aaa aaa aaa
Control Relay C 0-777 0-1777 0-3777
Block (BLK)
The Block instruction is a label which marks the beginning BLK
230 of a block of stages that can be activated as a group. A Stage C aza
240 instruction must immediately follow the Start Block
o501 Instruction. Initial Stage instructions are not allowed ina
block. The control relay (Caaa) specified in Block instruction
260

must not be used as an output anywhere else in the program.

Block End (BEND)

230
240
250-1
260

The Block End instruction is a label used with the Block

instruction. It marks the end of a block of stages. There is no _< BEND)
operand with this instruction. Only one Block End is

allowed per Block Call.

Operand Data Type | DL240 Range DL250-1 Range DL260 Range
aaa aaa aaa
Control Relay C 0-777 0-1777 0-3777

DL205 User Manual, 4th Edition, Rev. AI 127

Chapter 7: RLL"s Stage Programming

[
In this example, the Block Call is executed when DirectsOFT
stage 1 is active and X6 is on. The Block Call then <
automatically activates stage S10, which s1
immediately follows the Block instruction. o
This allows the stages between S10 and the Block — (OCT)
End instruction to operate as programmed. If the X8 (
BCALL instruction is turned off, or if the stage - BCALL)
containing the BCALL instruction is turned off, BLK
then all stages between the BLK and BEND co
instructions are automatically turned off. e
If you examine S15, you will notice that X7 could XS 6
reset Stage S1, which would disable the BCALL, — ——— our)
thus resetting all stages within the block.
—————(BEND)
Handheld Programmer Keystrokes
sG QH sse) |[1][ent | SG sis
[se][> J[xm J[2 | L{x7 st
[our [= |[vom][s][—] — F————(ReT)
(s |[= J[xm][s |[ew | |
[swer 8 J[e JL A JL v JL v J[> J[eem][o][e |
[swer][8 JL v JL «x J[. 2> J[ecem][o |[ent |
[se J[2 J[sse][+ J[o J[enr]
l STRH 9HX(IN)H 3 HENTI
[oot |[= |[woun][& |[ent |
[swer][8 J[e J[v J[o J[enr]

[se JL 2> J[sso][+ J[5][ew
s]l =2 JDaw] [7] [Cewr]

[rst |[=2 |[sso)][1 [ent |

Stage View in DirectSOFT
The Stage View option in DirectSOFT will let you view the ladder program as a flow chart.
The figure below shows the symbol convention used in the diagrams. You may find the stage
view useful as a tool to verify that your stage program has faithfully reproduced the logic of
the state transition diagram you intend to realize.

Transition

SG
Stage Reference to — i
a Stage Logic E> Jump @ Set Stage
— Output ® Reset Stage

The following diagram is a typical stage view of a ladder program containing stages. Note the
left-to-right direction of the flow chart.

Bl laegtinplngtt
o Lo Lro{g

1—28 I DL205 User Manual, 4th Edition, Rev. A

Chapter 7: RLL""s Stage Programming
]

Questions and Answers about Stage Programming

We include the following commonly-asked questions about Stage Programming as an aid to
new students. All question topics are covered in more detail in this chapter.

Q. What does stage programming do that I can't do with regular RLL programs?

A. Stages allow you to identify all the states of your process before you begin programming.
This approach is more organized, because you divide up a ladder program into sections. As
stages, these program sections are active only when they are actually needed by the process.
Most processes can be organized into a sequence of stages, connected by event-based
transitions.

Q. Isn't a stage really like a software subroutine?
A. No, it is very different. A subroutine is called by a main program when needed, and

executes only once before returning to the point from which it was called. A stage,
however, is part of the main program. It represents a state of the process, so an active stage

executes on every scan of the CPU until it becomes inactive.
Q. What are Stage Bits?
A. A stage bit is a single bit in the CPU’s image register, representing the active/inactive status
of the stage in real time. For example, the bit for Stage O is referenced as “S0”. If SO = 0,
then the ladder rungs in Stage O are bypassed (not executed) on each CPU scan. If SO = 1,
then the ladder rungs in Stage O are executed on each CPU scan. Stage bits, when used as
contacts, allow one part of your program to monitor another part by detecting stage
active/inactive status.
Q. How does a stage become active?
A. There are three ways:
« |f the Stage is an initial stage (ISG), it is automatically active at powerup.

» Another stage can execute a Stage JMP instruction naming this stage, which makes it active upon its
next occurrence in the program.

« A program rung can execute a Set Stage Bit instruction (such as SET S0).

Q. How does a stage become inactive?
A. There are three ways:
« Standard Stages (SG) are automatically inactive at powerup.
« A stage can execute a Stage JMP instruction, resetting its Stage Bit to 0.
< Any rung in the program can execute a Reset Stage Bit instruction (such as RST S0).

Q. What about the power flow technique of stage transitions?

A. The power flow method of connecting adjacent stages (directly above or below in the
program) actually is the same as the Stage Jump instruction executed in the stage above,
naming the stage below. Power flow transitions are more difficult to edit in DirectSOFT,
we list them separately from two preceding questions.

DL205 User Manual, 4th Edition, Rev. AI 7—29

Chapter 7: RLL"s Stage Programming

Q. Can | have a stage which is active for only one scan?
A. Yes, but this is not the intended use for a stage. Instead, make a ladder rung active for one
scan by including a stage Jump instruction at the bottom of the rung. Then the ladder will

execute on the last scan before its stage jumps to a new one.

Q. Isn't a Stage JMP just like a regular GOTO instruction used in software?

A. No, it is very different. A GOTO instruction sends the program execution immediately to
the code location named by the GOTO. A Stage JMP simply resets the Stage Bit of the
current stage, while setting the Stage Bit of the stage named in the JMP instruction. Stage
bits are 0 or 1, determining the inactive/active status of the corresponding stages. A stage

JMP has the following results:
* When the JMP is executed, the remainder of the current stage’s rungs are executed, even if they
reside past(under) the JMP instruction. On the following scan, that stage is not executed, because it

is inactive.
» The Stage named in the Stage JMP instruction will be executed upon its next occurrence. If located
past (under) the current stage, it will be executed on the same scan. If located before (above) the

current stage, it will be executed on the following scan.
Q. How can I know when to use stage JMP, versus a Set Stage Bit or Reset Stage
Bit?
A. These instructions are used according to the state diagram topology you have derived:

 Use a Stage JMP instruction for a state transition... moving from one state to another.

» Use a Set Stage Bit instruction when the current state is spawning a new parallel state or stage
sequence, or when a supervisory state is starting a state sequence under its command.

 Use a Reset Bit instruction when the current state is the last state in a sequence and its task is
complete, or when a supervisory state is ending a state sequence under its command.

Q. What is an initial stage, and when do I use it?
A. An initial stage (ISG) is automatically active at powerup. Afterwards, it works just like any

other stage. You can have multiple initial stages, if required. Use an initial stage for ladder
that must always be active, or as a starting point.

Q. Can I have place program ladder rungs outside of the stages, so they are

always on?
A. It is possible, but it's not good software design practice. Place ladder that must always be

active in an initial stage, and do not reset that stage or use a Stage JMP instruction inside
it. It can start other stage sequences at the proper time by setting the appropriate Stage

Bit(s).

Q. Can | have more than one active stage at a time?
A. Yes, and this is a normal occurrence for many programs. However, it is important to
organize your application into separate processes, each made up of stages. And a good
process design will be mostly sequential, with only one stage on at a time. However, all the

processes in the program may be active simultaneously.

7-30 I DL205 User Manual, 4th Edition, Rev. A

	DL205 PLC User Manual Volume 2 of 2
	Table of Contents for Volumes 1 & 2
	Chapter 1: Getting Started
	Chapter 2: Installation, Wiring and Specifications
	Chapter 3: CPU Specifications and Operations
	Chapter 4: System Design and Configuration
	Chapter 5: RLL and Intelligent Box (IBOX) Instructions
	Volume Two: Table of Contents
	Chapter 6: Drum Instruction Programming (DL250-1/DL260 only)
	Chapter 7: RLLPLUS Stage Programming
	Chapter 8: PID Loop Operation
	Chapter 9: Maintenance and Troubleshooting
	Appendix A: Auxiliary Functions
	Appendix B: DL205 Error Codes
	Appendix C: Instruction Execution Times
	Appendix D: Special Relays
	Appendix E: PLC Memory
	Appendix F: DL205 Product Weight Table
	Appendix G: ASCII Table
	Appendix H: Numbering Systems
	Appendix I: European Union Directives (CE)
	Index

	Chapter 6: Drum Instruction Programming (DL250-1/DL260 Only)
	Introduction
	Overview of Drum Operation
	Drum Control Techniques
	Drum Instructions

	Chapter 7: RLLPlus Stage Programming
	Introduction to Stage Programming
	Learning to Draw State Transition Diagrams
	Using the Stage Jump Instruction for State Transitions
	Stage Program Example: Toggle On/Off Lamp Controller
	Four Steps to Writing a Stage Program
	Stage Program Example: A Garage Door Opener
	Stage Program Design Considerations
	Parallel Processing Concepts
	Managing Large Programs
	RLLPLUS (Stage) Instructions
	Questions and Answers about Stage Programming

	Chapter 8: PID Loop Operation
	DL250-1 and DL260 PID Loop Features
	Introduction to PID Control
	Introducing DL205 PID Control
	PID Loop Operation
	Ten Steps to Successful Process Control
	PID Loop Setup
	PID Loop Tuning
	Using the Special PID Features
	Ramp/Soak Generator
	DirectSOFT Ramp/Soak Example
	Cascade Control
	Time-Proportioning Control
	Feedforward Control
	PID Example Program
	Troubleshooting Tips
	Glossary of PID Loop Terminology
	Bibliography

	Chapter 9: Maintenance and Troubleshooting
	Hardware Maintenance
	Diagnostics
	CPU Error Indicators
	PWR Indicator
	Communications Problems
	I/O Module Troubleshooting
	Noise Troubleshooting
	Machine Startup and Program Troubleshooting

	Appendix A: Auxiliary Functions
	Introduction
	AUX 2* — RLL Operations
	AUX 3* — V-memory Operations
	AUX 4* — I/O Configuration
	AUX 5* — CPU Configuration
	AUX 6* — Handheld Programmer Configuration
	AUX 7* - EEPROM Operations
	AUX 8* — Password Operations

	Appendix B: DL205 Error Codes
	Error Codes Table

	Appendix C: Instruction Execution Times
	Introduction
	Boolean Instructions
	Comparative Boolean Instructions
	Bit of Word Boolean Instructions
	Immediate Instructions
	Timer, Counter and Shift Register Instructions
	Accumulator Data Instructions
	Logical Instructions
	Math Instructions
	Differential Instructions
	Bit Instructions
	Number Conversion Instructions
	Table Instructions
	CPU Control Instructions
	Program Control Instructions
	Interrupt Instructions
	Network Instructions
	Intelligent I/O Instructions
	Message Instructions
	RLLPLUS Instructions
	DRUM Instructions
	Clock / Calender Instructions
	Modbus Instructions
	ASCII Instructions

	Appendix D: Special Relays
	DL230 CPU Special Relays
	DL240/DL250-1/DL260 CPU Special Relays

	Appendix E: PLC Memory
	DL205 PLC Memory

	Appendix F: DL205 Product Weight Table
	DL205 Product Weight Table

	Appendix G: ASCII Table
	ASCII Conversion Table

	Appendix H: Numbering Systems
	Introduction
	Binary Numbering System
	Hexadecimal Numbering System
	Octal Numbering System
	Binary Coded Decimal (BCD) Numbering System
	Real (Floating Point) Numbering System
	BCD/Binary/Decimal/Hex/Octal -What is the Difference?
	Data Type Mismatch
	Signed vs. Unsigned Integers
	AutomationDirect.com Products and Data Types

	Appendix I: European Union Directives (CE)
	European Union (EU) Directives
	Basic EMC Installation Guidelines

